文章编号: 0258-7025(2009)Supplement 2-0350-05

基于全贝叶斯神经网络的图像小波先验模型

龙兴明1 周 静2

1重庆师范大学物理系,重庆 400047

(2 重庆大学输配电装备及系统安全与新技术国家重点实验室,重庆 400044)

摘要 图像小波系数先验模型在图像处理中得到广泛的应用。已有小波系数的建模方法在模型选择、模型参数估 计和非高斯噪声图像恢复等方面存在一定限制。利用全贝叶斯神经网络(FBNN)模型对图像小波系数的统计特性 进行建模,利用现代粒子采样技术进行估计获得该模型的参数。对单尺度和父子尺度小波系数先验模型的仿真实 验表明,基于全贝叶斯神经网络的小波先验模型建模准确,较好地描述了小波系数统计特性,把由此方法获得的单 尺度和父子尺度小波系数先验粒子应用于图像去噪处理,仿真结果证实去噪处理后的图像质量在客观指标和主观 视觉上都有显著的提高。

关键词 图像处理;小波系数先验模型;全贝叶斯神经网络;粒子采样 中图分类号 TP751 **文献标识码** A **doi**: 10.3788/CJL200936s2.0350

Full Bayesian Neural Network Prior Statistical Modeling for Image Wavelet Coefficients

Long Xingming¹ Zhou Jing²

¹ Physics Department, Chongqing Normal University, Chongqing 400047, China ² State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China

Abstract Wavelet coefficients prior statistical models of image have been studied widely in the Bayesian-based image processing scopes. In this paper, we derive a precise prior statistical model based on full Bayesian neural network (FBNN). The parameters of the model can be estimated empirically from a sample image set by modern particle samplers (Montel Carlo) methods. The simulated results based on the prior models of single scale and parent-children scale show the model makes it possible to exploit the dependency between the scales. Furthermore, a novel image denoising method based on scale prior particles sampled from the fitted the single scale and parent-children prior models produces the high quality visual effects and peak signal-to-noise ratio (PSNR).

Key words image processing; wavelet coefficients prior model; full Bayesian neural network; particle sampling

1 引 言

小波变换是一种强有力的数学分析工具,利用 小波多分辨力分析特性进行图像处理一直是近年来 的一个研究热点^[1,2]。图像小波系数先验模型在基 于贝叶斯推断的去噪、压缩和运动跟踪等图像检测 中得到广泛的应用^[3]。这类方法的关键是获得准确 的图像小波系数的先验信息。研究发现,自然图像 小波细节系数统计具有明显的零中心对称性、零点 最大性和拖尾性。Mallat^[4]首次提出对单尺度先验 小波系数进行指数功率分布建模,获得了经典加性 高斯噪声模型的图像恢复问题完备解析表达; Moulin等^[5]把单尺度先验小波系数模型推广到广 义高斯模型。为了进一步准确描述先验信息, Canditiis等^[6~9]学者对小波系数的建模进行了多方 面改进,取得了重要进展。

尽管针对经典的高斯噪声自然图像恢复问题,

E-mail: lennydragon@163.com

基金项目:重庆市教委科学技术(KJ090829)和重庆师范大学青年基金(08XLS13)资助课题。

作者简介:龙兴明(1976—),男,副教授,硕士,主要从事半导体光电器件检测和信号处理技术等方面的研究。

上述模型能够获得简单的、完备的解,但是在先验模型选择、模型的参数估计和非高斯噪声图像恢复等 方面存在一定的限制^[3,6]。为了得到更一般的图像 先验模型,本文提出利用全贝叶斯神经网络对图像 的先验信息进行建模。仿真实验表明,采用全贝叶 斯参数估计算法获得的先验模型具有很高的稳健性 和精度,该模型具有较大的实用价值。

2 全贝叶斯神经网络先验模型

研究表明,自然图像有别于随机噪声图像的统计特性,自然图像的小波系数具有明显的统计特性:类高斯性、长拖尾性和噪声干扰性^[3]。为了获得更一般的图像先验模型,针对以上小波系数的统计密度分布特点,本文提出利用全贝叶斯神经网络对图像的先验信息进行建模,选择神经网络先验密度模型为

$$y = f(x;\theta) + e, \tag{1}$$

式中 e 为余量并假定概率分布为 $p_e(e)$,近似函数 $f(x;\theta) = b^2 + w^2 \tanh(b^1 + w^1 x), \theta = \{b^2, w^2, b^1, w^1\}$ 表示所有输入/输出隐含层的权重和基参数。

结合 Andrieu 的稳健全贝叶斯神经网络学习思想^[10],推导建议先验模型(1)的参数确定过程。

2.1 先验模型参数的贝叶斯估计

从贝叶斯学派的观点看,在已知模型 M[如(1)

式]和训练数据 $D = \{x, y\}$ 的条件下,模型未知参数 θ 包含在后验分布 $p(\theta | D, M)$ 的信息中,并且在最小均方误差准则下未知参数的最优估计为

$$\hat{\theta} = E[\theta \mid D, M] = \int \theta \ p(\theta \mid D, M) \,\mathrm{d}\theta.$$

根据贝叶斯公式,后验分布 $p(\theta | D, M)$ 为 $p(\theta | D, M) = p(D | \theta, M) p(\theta | M) / p(D | M) \infty$ $p(D | \theta, M) p(\theta | M),$ (2)

(2)式中 $p(\theta \mid M) = p(b^2, w^2, b^1, w^1 \mid M), p(D \mid M)$ 为 模型条件下的数据概率,它是一个已知常数, $p(D \mid \theta, M) = p(x, y \mid \theta, M) = p_e(e \mid \theta, M)p(x \mid \theta, M)$ 。

因此,当对后验分布 $p(\theta \mid D, M)$ 进行采样获得 粒子序列 $\{\theta^{(i)}\}_{i=1}^{N}$ 时,先验模型(1)未知参数 θ 的高 维积分估计问题可以转化为简单均值运算: $\hat{\theta} =$

$$\sum_{i=1}^{N} \theta^{(i)} / N_{\circ}$$

2.2 模型参数的采样

对于多变量未知模型参数 θ 的采样,利用 Gibbs采样可以转化为单变量采样^[11]。设初始参数

 $\begin{aligned} \theta_{j}^{(i+1)} &\sim p(\theta_{j} \mid \theta_{-j}^{(i)}, D, M) = \{ p_{e} [y - f(x; \theta] \mid \theta_{j}, \theta_{-j}^{(i)}, M) p(x \mid \theta_{j}, \theta_{-j}^{(i)}, M) \} p(\theta_{j}, \theta_{-j}^{(i)} \mid M) = \\ \{ p_{e} [e^{(i)}(\theta_{j})] p(x \mid \theta_{j}, \theta_{-j}^{(i)}, M) \} p(\theta_{j}, \theta_{-j}^{(i)} \mid M) = p_{e} [e^{(i)}(\theta_{j})] p(\theta_{j} \mid \theta_{-j}^{(i)}, M) p(\theta_{-j}^{(i)} \mid M) \infty \\ p_{e} [e^{(i)}(\theta_{j})] p(\theta_{j} \mid \theta_{-j}^{(i)}, M) , \end{aligned}$

式中 $e^{(i)}(\theta_j) = y - f(x;\theta) | (\theta_j, \theta_j^{(i)}, M)$ 表示当前参数条件下的训练误差,它是当前采样参数的函数。

由(3)式知,粒子序列 $\{\theta^{(i)}\}_{i=1}^{N}$ 取决于误差分布 以及参数的先验分布。对于模型(1)的基、权重以及 冗余噪声的先验分布,采用自动相关判决(ARD)先 验分布思想^[8],例如,当具有相同输入 x_k 连接的权 重 w_{k_i} 取相同H 参数H = $\{\alpha_k^2, \alpha_{ave}^2, v_a, \alpha_0^2, v_{a,ave}\}$ 时, 权重 w_{kj} 的 ARD 先验模型为: $w_{kj} \sim N(0, \alpha_k^2)$,并且满足 $\alpha_k^2 \sim \text{Inv_gamma}(\alpha_{ave}^2, v_a), \alpha_{ave}^2 \sim \text{Inv_gamma}(\alpha_0^2, v_{a,ave}),$ 这里 Inv gamma(•)表示逆 Gamma 函数。

因此,由(3)式和权重 w_{kj} 的 ARD 先验模型, w_{kj} 的 HMC 采样能量函数 $E(w_{kj})$ 和梯度矢量 $\Delta(w_{kj})$ 为

$$\begin{cases} E(w_{kj}) \propto \left[e^{(i)}(w_{kj})\right]^{\mathrm{T}} \left[e^{(i)}(w_{kj})\right]/2a_{k}^{2} + w_{kj}^{\mathrm{T}}w_{kj}/2a_{k}^{2}, \\ \Delta(w_{ki}) = \partial E(w_{kj})/\partial w_{kj}. \end{cases}$$

$$\tag{4}$$

由于采用了 ARD 先验模型,故应对 H 参数进行相应采样。若已知权重的 H 参数为 $H^{(i)} = \{a_k^2, a_{ave}^2, v_a, a_o^2, v_{a,ave}\},$ 那么根据参数的 Gibbs 采样原理(3)式有

 $H_{j}^{(i+1)} \sim p(H_{j} \mid H_{-j}^{(i)}, \theta^{(i)}, D, M) \propto p(y \mid \theta^{(i)}, x, H^{(i)}, M) p(\theta^{(i)} \mid x, H^{(i)}, M) p(x \mid H^{(i)}, M) p(H^{(i)} \mid M) = p_{e} [e^{(i)}(\theta^{(i)})] p(\theta^{(i)} \mid x, H^{(i)}, M) p(H_{j} \mid H_{-j}^{(i)}, M) \propto p(H_{j} \mid H_{-j}^{(i)}, M).$ (5)

(3)

2.3 先验模型确定步骤

根据以上分析,先验模型参数估计的步骤为:

1) 对待分析的图像 $I(s) \in L^2(\mathbb{R}^2)$ 进行二维离 散正交小波变换^[4],其中图像的细节小波系数单尺 度子带记为{LH,HL,HH},记 HH_{12} 表示父子小 波分量 HH_1 和 HH_2 的父子关系。

2) 对各单尺度或者父子尺度子带进行统计。

3)根据统计结果对模型(1)参数进行采样。未 知模型参数 θ 采样具体步骤为:I)对未知的模型参 数 θ 和 H 参数置初值;II)在其他参数不变的条件 下利用(4)式对权重进行 HMC 采样;III)利用 Gibbs 采样(3)式对基矢量进行更新;IV)根据(5)式 对噪声、基和权重的 H 参数进行更新;V)进入新的 一轮采样。

4) 根据采样获得粒子序列 $\{\theta^{(i)}\}_{i=1}^{N}$,利用简单 均值运算: $\hat{\theta} = \sum_{i=1}^{N} \theta^{(i)} / N$ 获得所需的模型参数。

3 实际图像的小波先验模型

根据上述建议方法,在 MATLAB 7.0 中,以标 准"woman"图像为例,考察该图像经二阶正交小波 变换后的单尺度和父子尺度联合分布特性,在此基 础上,根据获得的模型进行粒子重采样,获得先验粒 子,并对真实统计、拟合统计和重采样的统计性能进 行比较。

3.1 单尺度先验模型

对父系数分量进行建模。图 1 中的 3 条曲线分 别表示了 HH₁ 分量中大小为一40~40 范围的小波 系数真实统计结果(org)、建议模型的拟合结果(fit-FBNN)和基于建议模型重采样粒子的统计结果(rjhist)。其中建议模型(1)采用单输入/单输出及 10 隐含层的神经网络结构,该模型的 31 个参数估计是 进行 500 次迭代采样,再去除初始的 50 个数据,并

图 1 父系数分量 HH₁ 统计结果 Fig. 1 Probability distribution of parent coefficients HH₁

对余下数据隔十选一求均值所得。为了实际应用, 以方差为 20 的零均值高斯函数作为比较函数(其中 拒绝采样算法中的参数 *M*=13)进行拒绝采样^[11]。 把经过 20000 迭代采样并剔除初始 1000 点的粒子 作为单尺度先验粒子。由拟合结果可见,该模型达 到了较高的拟合精度并且由此生成的先验粒子具有 准确的代表性。类似地,可以得到二阶离散小波变 换其余各子带的原始统计、拟合统计和先验粒子统 计结果。

3.2 父子联合先验模型

为了描述小波系数之间的相关性,对二阶分解 条件下的3个父子系数进行联合统计:HH₁₂,LH₁₂ 和HL₁₂。图2表示了这3个父子小波系数联合统计 结果。每个联合统计分布分块大小为25,对该两输 入(父和子系数)单输出(联合概率)的统计结果利用 两输入单输出及10隐含层的先验模型进行拟合。 其中模型中的41个参数估计结果是通过300次迭 代采样去除初始50个数据后,对余下数据隔十选一 求均值而获得。

类似于单尺度分析,对父子系数的拟合结果进行 MH 随机行走重采样^[11]。其中随机行走方差为 12,迭代次数为 5000。父子先验粒子为剔出初始 500 点后的 MH 随机行走重采样结果。

由图 2 可见,一方面,建议模型有效地抑制了噪声,提高了真实三维统计和二维投影结果;另一方面,根据建议模型生成的先验粒子,能够有效地代表 先验信息。因此,由该方法获得的先验粒子能够有 效地描述图像的先验信息,从而为推广基于粒子采 样的图像非参数贝叶斯推断有着重要的作用。

4 先验模型在图像去噪中的应用

利用以上方法获得的先验模型以及由此生成的 先验粒子,对噪声图像恢复问题进行研究。设一幅 原始图像 x受到噪声n 干扰后的观测图像为g:g = x + n;那么,在正交小波域中可以表示为:y = w + e。由贝叶斯理论知,最小均方误差准则下的恢复图 像小波系数最优估计值为

$$\hat{w}(y) = E_w[p(w/y)] = E_w[p(w)p(y/w)] = E_w[p(w)p_e(y-w)].$$
(6)

由 Montel Carlo 积分知:若获得的先验粒子为 $\{w^{(i)}\}_{i=1}^{N}, \mathbf{U}(6)$ 式变为

$$\hat{w}(y) = \sum_{i} p_{e}(y - w^{(i)})/N.$$
(7)

(7)式表明,对于任意噪声图像的恢复问题,当

图 2 父子系数分量 HH₁₂,LH₁₂,HL₁₂ 的统计结果:(a1~a3)分别为父子系数分量 HH₁₂的原始统计结果与投影、模型拟 合结果与投影及重采样统计结果与投影,(b1~b3)为父子系数分量 LH₁₂的原始统计结果与投影、模型拟合结果与投 影及重采样统计结果与投影,(c1~c3)为父子系数分量 HL₁₂的原始统计结果与投影、模型拟合结果与投影及重采样 统计结果与投影

Fig. 2 Probability distribution of parent-children coefficients HH_{12} , LH_{12} , HL_{12} . (a1~a3): probability distributions of coefeciets HH_{12} , original, piror model and prior particles; (b1~b3): probability distributions of coefeciets LH_{12} , original, piror model and prior particles; (c1~c3): probability distributions of coefeciets HL_{12} , original, piror model and prior particles; (c1~c3): probability distributions of coefeciets HL_{12} , original, piror model and prior particles.

噪声的小波变换密度 $p_e(\cdot)$ 已知时,可以得到恢复图像小波系数的最优估计结果。对于受到独立同分布高斯白噪声干扰的经典图像去噪问题,由于经正交小波变换后的噪声密度仍然为高斯函数,即 $p_e(\cdot) =$

 $N(e;0,\sigma^2)$,因此,经典恢复图像的收缩算子为 $w(y) = \sum_{i} N(y - w^{(i)};0,\sigma^2)/N.$

选用图 3(a)图所示的标准"lenna. tif"图像,对 受到独立同分布高斯白噪声干扰后的噪声图像

去噪函数 wdcbm2(c)、单尺度先验粒子(d)和父子联合粒子(e)

Fig. 3 Original and erestored images "lenna. tif". (a) original; (b) noised images (PSNR=18.71 dB); (c) restored image by wdcbm2 of MATLAB7.0 (PSNR=19.69 dB); (d) restored image by the prior models of single scale (PSNR=23.16 dB); (e) restored image by the prior models of parent-children scale (PSNR=24.19 dB)

中

(PSNR 为 18.71 dB)利用(7)式进行去噪。在二阶 正交小波分解条件下,基于单尺度先验粒子的恢复 图像(PSNR 为 23.16 dB)和基于父子联合先验粒子 的恢复图像(PSNR 为 24.19 dB)的仿真结果,同 MATLAB7.0 标准函数 wdcbm2 恢复的图像 (PSNR 为 19.69 dB)相比,无论是客观指标还是视 觉效果都有显著提高「如图 3(d),(e)所示]。

5 结 论

提出了基于全贝叶斯神经网络的图像小波系数 统计特性建模方法,该方法不仅能够实现对小波系 数先验模型的精确描述,而且是更一般的图像先验 模型(例如,生物医学图像或宇宙图像往往不服从典 型的先验模型)。其次,把粒子采样理论与小波系数 先验模型进行了有效结合,通过仿真实验分析了图 像小波系数单尺度和父子尺度的统计特性,由此模 型生成的单尺度先验粒子和父子尺度粒子应用于基 于小波贝叶斯推断的噪声图像恢复问题,获得了满 足更一般噪声的粒子收缩解;与经典的图像去噪方 法相比,基于该算法的恢复图像在客观指标和主观 视觉都有显著的提高。

参考文献

1 Zhang Jingjing, Fang Yonghua. Novel denoising method for remote sensing image based on Contourlet transform[J]. Acta Optica Sinica, 2008, 28(3): 462~466

张晶晶,方勇华.基于 Contourlet 变换的遥感图像去噪新算法 [J].光学学报,2008,**28**(3):462~466

2 Zhang Yudong, Dai Yun, Shi Guohua et al.. Application of onedimensional wavelet transformation in time domain optical coherence tomography imaging [J]. Chinese J. Lasers, 2008, 35(7): 1013~1016

张雨东,戴 云,史国华等.一维小波变换在时域光学相干层析成像中的应用[J].中国激光,2008,35(7):1013~1016

- 3 Peter Muller, Brani Vidakovic. Bayesian Inference in Wavelet Based Models (Lectrue Notes in Statistics) [M]. New York: Springer-Verlag,1999, 141: 1~18
- 4 S. Mallat. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Trans. Pattern Anal. Machine Intell., 1989, 11(7): 674~693
- 5 P. Moulin, J. Liu. Analysis of multiresolution image denoising schemes using generalized Gaussian and complexity priors [J].
 IEEE Trans. Information Theory, 1999, 45(3): 909~919
- 6 De Canditiis, B. Vidakovic. Wavelet Bayesian block shrinkage via mixtures of normal-inverse gamma priors [J]. J. Computational and Graphical Statistics, 2004, **13**: 383~398
- 7 L. Boubchir, J. M. Fadili. Bayesian denoising based on the MAP estimation in wavelet-domain using Bessel K form prior[C]. *IEEE International Conference on Image Processing*, 2005, 1: 113~116
- 8 M. S. Crouse, R. D. Nowak, R. G. Baraniuk. Wavelet-based statistical signal processing using hidden markov models [J]. *IEEE Trans. Signal Process*, 1998, **46**(4): 886~902
- 9 L. Sendur, I. W. Selesnick. Bivariate shrinkage functions for wavelet—based denoising exploiting interscale dependency [J]. *IEEE Trans. Signal Process*, 2002, **50**(11): 2744~2756
- 10 Christophe Andrieu, Nando de Freitas, Arnaud Doucet. Robust full Bayesian learning for radial basis networks [J]. Neural Computation, 2001, 13(10): 2359~2407
- 11 J. C. Spall. Estimation via markov chain Monte Carlo[J]. IEEE Control Systems Magazine, 2003, 23(2): 34~45